2N4918-2N4920 Series

Medium-Power Plastic PNP Silicon Transistors

These medium-power, high-performance plastic devices are designed for driver circuits, switching, and amplifier applications.

Features

- Low Saturation Voltage $-\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}=0.6 \mathrm{Vdc}(\mathrm{Max}) @ \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}$
- Excellent Power Dissipation, $\mathrm{P}_{\mathrm{D}}=30 \mathrm{~W} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$
- Excellent Safe Operating Area
- Gain Specified to $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}$
- Complement to NPN 2N4921, 2N4922, 2N4923
- $\mathrm{Pb}-$ Free Package is Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage 2N4918 2N4919 2N4920	$\mathrm{V}_{\text {CEO }}$	$\begin{aligned} & 40 \\ & 60 \\ & 80 \end{aligned}$	Vdc
Collector - Base Voltage 2N4918 2N4919 2N4920	$\mathrm{V}_{\text {CBO }}$	$\begin{aligned} & 40 \\ & 60 \\ & 80 \end{aligned}$	Vdc
Emitter - Base Voltage	$\mathrm{V}_{\text {Ebo }}$	5.0	Vdc
Collector Current - Continuous (Note 1)	Ic (Note 2)	$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$	Adc
Base Current	I_{B}	1.0	Adc
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 30 \\ 0.24 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The $1.0 \mathrm{~A} \mathrm{max} \mathrm{I}_{\mathrm{C}}$ value is based upon JEDEC current gain requirements. The 3.0 A max value is based upon actual current-handling capability of the device (See Figure 5).
2. Indicates JEDEC Registered Data for 2N4918 Series.

THERMAL CHARACTERISTICS (Note 3)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	өJC	4.16	${ }^{\circ} \mathrm{C} / \mathrm{W}$

3. Recommend use of thermal compound for lowest thermal resistance.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

3.0 A, 40-80 V, 30 W
 GENERAL PURPOSE POWER TRANSISTORS

TO-225
CASE 077
STYLE 1

MARKING DIAGRAM

$$
\begin{array}{ll}
\mathrm{xx} & =18,19,20 \\
\mathrm{Y} & =\text { Year } \\
\mathrm{WW} & =\text { Work Week }
\end{array}
$$

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit

OFF CHARACTERISTICS

$\begin{aligned} & \text { Collector-Emitter Sustaining Voltage (Note 4) } \\ & \left(\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0\right) \end{aligned}$	2N4918 2N4919 2N4920	$\mathrm{V}_{\text {CEO(sus) }}$	40 60 80	-	Vdc
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \left(\mathrm{V}_{\mathrm{CE}}=20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=40 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right) \end{aligned}$	2N4918 2N4919 2N4920	$I_{\text {cee }}$	-	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	mAdc
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \left(\mathrm{V}_{\mathrm{CE}}=\text { Rated } \mathrm{V}_{\mathrm{CEO}}, \mathrm{~V}_{\mathrm{BE} \text { (off) }}=1.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=\text { Rated } \mathrm{V}_{\mathrm{CEO}}, \mathrm{~V}_{\mathrm{BE}(\text { off })}=1.5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right. \end{aligned}$		ICEX	-	$\begin{aligned} & 0.1 \\ & 0.5 \end{aligned}$	mAdc
Collector Cutoff Current $\left(V_{C B}=\text { Rated } V_{C B}, I_{E}=0\right)$		$\mathrm{I}_{\text {cbo }}$	-	0.1	mAdc
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{BE}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$		IEbo	-	1.0	mAdc

ON CHARACTERISTICS

$\begin{aligned} & \text { DC Current Gain (Note 4) } \\ & \text { (IC } \left.\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	40 30 10	$\begin{gathered} - \\ 150 \\ \hline \end{gathered}$	-
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage (Note 4) } \\ & \left(I_{C}=1.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{Adc}\right) \end{aligned}$	$\mathrm{V}_{\text {CE(sat) }}$	-	0.6	Vdc
Base-Emitter Saturation Voltage (Note 4) $\left(I_{C}=1.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{Adc}\right.$)	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	1.3	Vdc
Base-Emitter On Voltage (Note 4) $\left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right)$	$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	-	1.3	Vdc

SMALL-SIGNAL CHARACTERISTICS

Current-Gain - Bandwidth Product $\left(\mathrm{I}_{\mathrm{C}}=250 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	f_{T}	3.0	-	MHz
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=100 \mathrm{kHz}\right)$	C_{ob}	-	100	pF
Small-Signal Current Gain $\left(\mathrm{I}_{\mathrm{C}}=250 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}\right)$	h_{fe}	25	-	-

4. Pulse Test: $\mathrm{PW} \approx 300 \mu \mathrm{~s}$, Duty Cycle $\approx 2.0 \%$

ORDERING INFORMATION

Device	Package	Shipping †
2N4918	TO-225	500 Unit / Bulk
2N4919	TO-225	500 Unit / Bulk
2N4920	TO-225	500 Unit / Bulk
2N4920G	TO-225 (Pb-Free)	500 Unit / Bulk

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

2N4918-2N4920 Series

Figure 1. Power Derating

Figure 2. Switching Time Equivalent Test Circuit

Figure 3. Turn-On Time

Figure 4. Thermal Response

Figure 5. Active-Region Safe Operating Area

Figure 6. Storage Time

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{C}-V_{C E}$ operation i.e., the transistor must not be subjected to greater dissipation than the curves indicate.
The data of Figure 5 is based on $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}=150^{\circ} \mathrm{C}$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ $\leq 150^{\circ} \mathrm{C}$. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

Figure 7. Fall Time

Figure 8. Current Gain

Figure 10. Effects of Base-Emitter Resistance

Figure 9. Collector Saturation Region

Figure 11. "On" Voltage

Figure 12. Collector Cut-Off Region

Figure 13. Temperature Coefficients

2N4918 - 2N4920 Series

PACKAGE DIMENSIONS

TO-225
CASE 77-09
ISSUE AD

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. NUMBER AND SHAPE OF LUGS OPTIONAL.

DIM	MILLIMETERS	
	MIN	MAX
A	2.40	3.00
A1	1.00	1.50
b	0.60	0.90
b2	0.51	0.88
C	0.39	0.63
D	10.60	11.10
E	7.40	7.80
e	2.04	2.54
L	14.50	16.63
L1	1.27	2.54
P	2.90	3.30
Q	3.80	4.20

STYLE 1:
PIN 1. EMITTER
2., 4. COLLECTOR

BASE

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

