

General Description

The MAX15040 evaluation kit (EV kit) provides a proven design to evaluate the MAX15040 high-efficiency, 4A, step-down regulator with integrated switches. The EV kit is preset for 1.8V output at load currents up to 4A from a 2.4V to 3.6V input supply. The MAX15040 features a 1MHz switching frequency, which allows the EV kit to achieve an all-ceramic capacitor design and fast-transient responses. The EV kit achieves up to 95% efficiency.

The MAX15040 EV kit PCB comes with a MAX15040EWE+ installed.

Features

- ♦ Operates from 2.4V to 3.6V Input Supply
- **♦ All-Ceramic Capacitor Design**
- ♦ 1MHz Switching Frequency
- ♦ Output-Voltage Range: 0.6V to (0.9 x V_{IN})
- **♦** Lead(Pb)-Free and RoHS Compliant
- ♦ Proven PCB Layout
- ♦ Fully Assembled and Tested

Ordering Information

PART	TYPE	
MAX15040EVKIT+	EV Kit	

⁺Denotes lead(Pb)-free and RoHS compliant.

Component List

DESIGNATION	QTY	DESCRIPTION
C1	0	Not installed, ceramic capacitor (0805)
C2, C9	2	22μF ±20%, 6.3V X5R ceramic capacitors (0805) Murata GRM21BR60J226M
C3, C8	2	0.1µF ±10%, 16V X7R ceramic capacitors (0603) TDK C1608X7R1C104K
C4	1	1µF ±10%, 16V X5R ceramic capacitor (0603) TDK C1608X5R1C105K
C5	1	820pF ±10%, 16V ceramic capacitor (0603) AVX 0603YC821KAT2A
C6	1	33pF ±5%, 16V COG ceramic capacitor (0603) TDK C1608C0G1H330J
C7	1	0.033µF ±10%, 25V X7R ceramic capacitor (0603) TDK C1608X7R1E333K
C10	1	470pF ±10%, 50V, X7R ceramic capacitor (0603) Murata GRM188R71H471K

DESIGNATION	QTY	DESCRIPTION
C11	0	Not installed, ceramic capacitor (0805)
C12	0	Not installed, ceramic capacitor (0603)
JU1	1	2-pin header
L1	1	0.47µH, 17.5A inductor (6.86mm x 6.47mm x 3.00mm) Vishay IHLP2525CZERR47M06
R1	1	10Ω ±5% resistor (0603)
R2	1	100kΩ ±1% resistor (0603)
R3	1	20kΩ ±5% resistor (0603)
R4	1	432Ω ±1% resistor (0603)
R5	1	8.06kΩ ±1% resistor (0603)
R6	1	4.02kΩ ±1% resistor (0603)
R7	1	4.99kΩ ±1% resistor (0603)
R8	0	Not installed, resistor (0603)
U1	1	Step-down regulator (16 WLP) Maxim MAX15040EWE+
_	1	Shunt
_	1	PCB: MAX15040 EVALUATION KIT+

Component Suppliers

SUPPLIER	PHONE	WEBSITE
AVX Corporation	843-946-0238	www.avxcorp.com
Murata Electronics North America, Inc.	770-436-1300	www.murata-northamerica.com
TDK Corp.	847-803-6100	www.component.tdk.com
Vishay	402-563-6866	www.vishay.com

Note: Indicate that you are using the MAX15040 when contacting these component suppliers.

Quick Start

Recommended Equipment

- MAX15040 EV kit
- 3.3V/4A DC power supply
- One load capable of 4A
- One digital voltmeter

Procedure

The MAX15040 EV kit is fully assembled and tested. Follow the steps below to verify the board operation. Caution: Do not turn on power supply until all connections are completed.

- Connect the positive terminal of the 3.3V supply to the VIN pad and the negative terminal to the nearest GND pad.
- 2) Connect the positive terminal of the 4A load to the VOUT pad and the negative terminal to the nearest GND pad.
- 3) Connect the digital voltmeter across the VOUT pad and the nearest GND pad.
- 4) Verify that a shunt is not installed on JU1.
- 5) Turn on the DC power supply.
- 6) Enable the load.
- 7) Verify that the voltmeter displays 1.8V.

_Detailed Description of Hardware

The MAX15040 EV kit provides a proven design to evaluate the MAX15040 high-efficiency, 4A, step-down regulator with integrated switches. The applications include server, point-of-load, ASIC/CPU/DSP, DDR, base-station, telecom and networking, and RAID control power supplies. The EV kit is preset for 1.8V output at load currents up to 4A from a 2.4V to 3.6V input supply. The MAX15040 features a 1MHz fixed switching frequency, which allows the EV kit to achieve an all-ceramic capacitor design and fast-transient responses.

Soft-Start and Reference Input (REFIN/SS)

The MAX15040 utilizes an adjustable soft-start function to limit inrush current during startup. The soft-start time is adjusted by the value of C7, the external capacitor from REFIN/SS to GND. By default, C7 is currently $0.033\mu F$, which gives a soft-start time of approximately 2.5ms. To adjust the soft-start time, determine the C7 using the following formula:

$$C7 = (8\mu A \times tss)/0.6V$$

where tss is the required soft-start time in seconds and C7 is in farads. C7 should be a minimum of 1nF capacitor between REFIN/SS and GND.

When no external reference is applied at the REFIN/SS, the device uses the internal 0.6V reference. If a different reference voltage is needed, connect a reference up to (VDD - 1.85V) across the PCB pads of REFIN/SS and the nearest GND pad.

When an external reference is applied to REFIN/SS, softstart must be provided externally and the external reference source must be able to sink 8µA soft-start current.

Setting Output Voltage

The MAX15040 EV kit can be adjusted from 0.6V to 90% of VIN by changing the values of R5 and R6. To determine the value of the resistor-divider, first select R5 between $2k\Omega$ to $10k\Omega$. Then use the following equation to calculate R6:

$$R6 = (V_{FB} \times R5)/(VOUT - V_{FB})$$

where VFB is equal to the reference voltage at REFIN/SS and VOUT is the output. If no external reference is applied at REFIN/SS, the internal reference is automatically selected and VFB becomes 0.6V. In this case, R6 is not needed for VOUT = 0.6V.

When R5 is changed, compensation components R4, C10, R7, C5, and C6 must be recalculated to ensure loop stability (refer to the *Compensation Design* section in the MAX15040 IC data sheet).

Regulator Enable (EN)

To shut down the converter, install a shunt on jumper JU1. For normal operation, remove the shunt from JU1. See Table 1 to configure jumper JU1.

Table 1. Regulator Enable (EN) Jumper JU1 Description

SHUNT POSITION	DESCRIPTION	
1-2	Disables the MAX15040	
Open*	Normal operation	

^{*}Default position.

Power Good (PWRGD)

PWRGD is an open-drain output that goes high impedance when VFB is above 92.5% x VREFIN/SS and VREFIN/SS is above 0.54V. PWRGD becomes low when VFB is below 90% of VREFIN/SS for at least 48 clock cycles or VREFIN/SS is below 0.54V. PWRGD also becomes low during shutdown. On the EV kit, the PWRGD PCB pad is pulled up to VDD through resistor R3. Use the GND PCB pad as a ground reference for this signal.

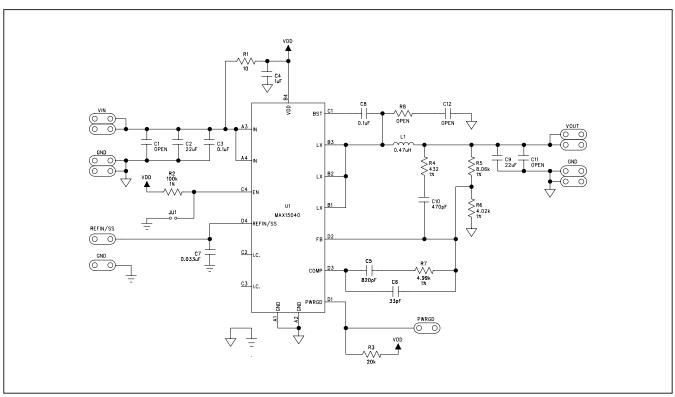


Figure 1. MAX15040 EV Kit Schematic

THE PROPERTY OF THE PROPERTY O

Figure 2. MAX15040 EV Kit Component Placement Guide—Component Side

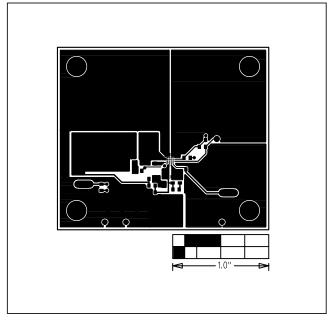


Figure 3. MAX15040 EV Kit Component PCB Layout—Component Side

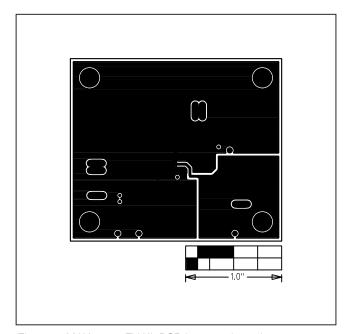


Figure 4. MAX15040 EV Kit PCB Layout—Inner Layer 2

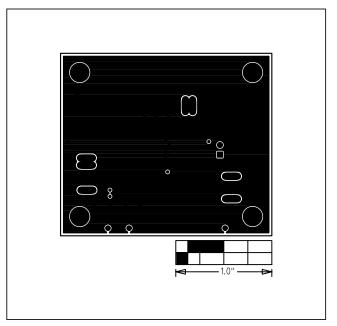


Figure 5. MAX15040 EV Kit PCB Layout—Inner Layer 3

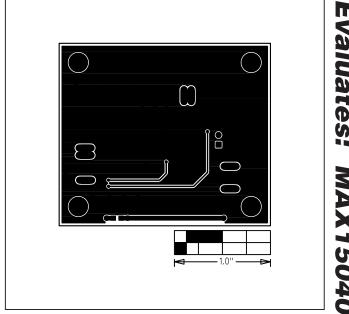


Figure 6. MAX15040 EV Kit PCB Layout—Solder Side