MC74VHCT257A

Quad 2-Channel Multiplexer with 3-State Outputs

The MC74VHCT257A is an advanced high speed CMOS quad 2-channel multiplexer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

It consists of four 2-input digital multiplexers with common select (S) and enable ($\overline{\mathrm{OE}}$) inputs. When $(\overline{\mathrm{OE}})$ is held High, selection of data is inhibited and all the outputs go Low.

The select decoding determines whether the A or B inputs get routed to the corresponding Y outputs.

The VHCT inputs are compatible with TTL levels. This device can be used as a level converter for interfacing 3.3 V to 5.0 V because it has full 5.0 V CMOS level output swings.

The VHCT257A input structures provide protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. The output structures also provide protection when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$. These input and output structures help prevent device destruction caused by supply voltage-input/output voltage mismatch, battery backup, hot insertion, etc.

The internal circuit is composed of three stages, including a buffered output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7.0 V , allowing the interface of 5.0 V systems to 3.0 V systems.

Features

- High Speed: $\mathrm{t}_{\mathrm{PD}}=4.1 \mathrm{~ns}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=4.0 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- TTL-Compatible Inputs: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Designed for 2.0 V to 5.5 V Operating Range
- Low Noise: $\mathrm{V}_{\text {OLP }}=0.8 \mathrm{~V}$ (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance:

Human Body Model > 2000 V;
Machine Model > 200 V

- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MC74VHCT257A

S	$1 \bullet$	16	V V_{CC}
A0	2	15	$\overline{\mathrm{OE}}$
B0 [3	14	A3
Y0 [4	13	B3
A1	5	12	Y3
B1	6	11	A2
Y1	7	10	B2
GND	8	9	Y2

Figure 1. Pin Assignment

Figure 2. IEC Logic Symbol

Figure 3. Expanded Logic Diagram

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{CC}}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage $\begin{array}{ll}\text { Output in 3-State } \\ & \text { High or Low State }\end{array}$	$\begin{gathered} -0.5 \text { to }+7.0 \\ -0.5 \text { to } V_{C C}+0.5 \end{gathered}$	V
IIK	Input Diode Current	-20	mA
lok	Output Diode Current	± 20	mA
Iout	DC Output Current, per Pin	± 25	mA
ICC	DC Supply Current, $\mathrm{V}_{\text {CC }}$ and GND Pins	± 75	mA
P_{D}	Power Dissipation in Still Air SOIC TSSOP	$\begin{aligned} & 200 \\ & 180 \end{aligned}$	mW
TSTG	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	ESD Withstand VoltageHuman Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	$\begin{aligned} & \hline>2000 \\ & >200 \\ & >2000 \end{aligned}$	V
LLATCHUP	Latchup Performance Above $\mathrm{V}_{\text {CC }}$ and Below GND at $125^{\circ} \mathrm{C}$ (Note 4)	± 300	mA
θ_{JA}	Thermal Resistance, Junction-to-Ambient $\begin{aligned} & \text { SOIC } \\ & \text { TSSOP }\end{aligned}$	$\begin{aligned} & \hline 143 \\ & 164 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Tested to EIA/JESD22-A114-A
2. Tested to EIA/JESD22-A115-A
3. Tested to JESD22-C101-A
4. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit
V_{CC}	DC Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	DC Input Voltage	0	5.5	V
$\mathrm{~V}_{\text {OUT }}$	DC Output Voltage	0	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range, all Package Types	-55	125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}_{ \pm} 0.5 \mathrm{~V}$	0	20
$\mathrm{~ns} / \mathrm{V}$				

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO

 0.1\% BOND FAILURES| Junction
 Temperature ${ }^{\circ} \mathbf{C}$ | Time, Hours | Time, Years |
| :---: | :---: | :---: |
| 80 | $1,032,200$ | 117.8 |
| 90 | 419,300 | 47.9 |
| 100 | 178,700 | 20.4 |
| 110 | 79,600 | 9.4 |
| 120 | 37,000 | 4.2 |
| 130 | 17,800 | 2.0 |
| 140 | 8,900 | 1.0 |

Figure 4. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Condition	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage		4.5 to 5.5	2			2		2		V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage		4.5 to 5.5			0.8		0.8		0.8	V
V_{OH}	Maximum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \end{aligned}$	4.5	3.94			3.8		3.66		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$	4.5	3.94			3.8		3.66		
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{l}_{\mathrm{OL}}=50 \mu \mathrm{~A} \\ & \hline \end{aligned}$	4.5		0	0.1		0.1		0.1	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=8 \mathrm{~mA} \end{aligned}$	4.5			0.36		0.44		0.52	
1 N	Input Leakage Current	$\mathrm{V}_{1 \mathrm{~N}}=5.5 \mathrm{~V}$ or GND	0 to 5.5			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
loz	Maximum 3-State Leakage Current	$\begin{aligned} & \hline V_{\text {IN }}=V_{\text {IH }} \text { or } V_{\text {IL }} \\ & V_{\text {OUT }}=V_{C C} \text { or } G N D \\ & \hline \end{aligned}$	5.5			$\begin{gathered} \pm 0.2 \\ 5 \end{gathered}$		± 2.5		± 2.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCT }}$	Maximum Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5			1.35		1.5		1.65	mA
I_{Cc}	Additional Quiescent Supply Current (per pin)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5			4.0		40		40	$\mu \mathrm{A}$
IOPD	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$	0			0.5		5		5	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=\leq 85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
			Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Maximum Propagation Delay, A or B to Y	$\begin{array}{ll}\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\end{array}$		$\begin{aligned} & 5.8 \\ & 8.3 \end{aligned}$	$\begin{gathered} \hline 9.3 \\ 12.8 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 14.5 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$ $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\begin{aligned} & 3.6 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 7.9 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	
$\begin{aligned} & \text { tPLH, } \\ & \text { tpHL }^{2} \end{aligned}$	Maximum Propagation Delay, S to Y	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$ $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ $\mathrm{V}_{\mathrm{Cc}}=5.0 \pm 0.5 \mathrm{~V}$ $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\begin{aligned} & \hline 7.0 \\ & 9.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 11.0 \\ 14.5 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{\|l} \hline 13.0 \\ 16.5 \\ \hline \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 16.5 \end{aligned}$	ns
		$\begin{array}{ll}\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\end{array}$		$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 8.8 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{\|c\|} \hline 8.0 \\ 10.0 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	
$\begin{aligned} & \mathrm{tpZL}, \\ & \text { tpzH } \end{aligned}$	Maximum Output Enable, Time, OE to Y	$\begin{array}{\|ll} \hline \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{array}$		$\begin{aligned} & 6.7 \\ & 9.2 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 12.5 \\ 16.0 \end{array}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 12.5 \\ & 16.0 \end{aligned}$	ns
		$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{array}$		$\begin{aligned} & 3.6 \\ & 5.1 \end{aligned}$	$\begin{array}{\|c\|} \hline 6.8 \\ 11.0 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.0 \\ 12.0 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8.0 \\ 10.0 \\ \hline \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 12.0 \end{gathered}$	
$\begin{aligned} & \text { tpLZ, } \\ & t_{\text {tPHZ }} \end{aligned}$	Maximum Output Disable, Time, $\overline{O E}$ to Y	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega & \\ \hline \end{array}$		10.5	14.0	1.0	15.0	1.0	15.0	ns
		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega & \\ \hline \end{array}$		9.5	12.0	1.0	13.0	1.0	13.0	
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance			4	10		10		10	pF
C_{PD}	Power Dissipation Capacitance (Note 5)		Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$							pF
			20							

5. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}}$. C_{PD} is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

NOISE CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Symbol	Characteristic	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Unit
		Typ	Max	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	0.3	0.8	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	-0.3	-0.8	V
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage		2.0	V
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage		0.8	V

MC74VHCT257A

Figure 5. Switching Waveform

Figure 6. Switching Waveform

ghe

*Includes all probe and jig capacitance
Figure 7. Test Circuit

*Includes all probe and jig capacitance
Figure 8. Test Circuit

Figure 9. Input Equivalent Circuit

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC74VHCT257ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74VHCT257ADR2G	SOIC-16 (Pb-Free)	2500 Tape \& Reel
MC74VHCT257ADTG	TSSOP-16 (Pb-Free)	96 Units / Rail
M74VHCT257ADTR2G	TSSOP-16 (Pb-Free)	2500 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MC74VHCT257A

PACKAGE DIMENSIONS

SOLDERING FOOTPRINT

MC74VHCT257A

PACKAGE DIMENSIONS

TSSOP-16
CASE 948F
ISSUE B

ON Semiconductor and the (011) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

